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Abstract—This paper presents a congestion based game scheme 

for reactive handoff management in cognitive radio networks. In 

these networks, Secondary users as the rational decision makers 

aim to maximize their utility, considering the status of primary 

channels and the contention regions for each channel. We 

formulate a multi-objective optimization problem in which the 

proposed cost function for secondary users considers the quality, 

price and handoff cost of the selected channel. This type of 

pricing scheme not only manages the cost, but also avoids the 

secondary users from all selecting the same set of channels; 

hence reduces the congestion in high quality channels. The 

target channel for handoff is selected according to the spatial 

contention between secondary users. This target channel has the 

minimum cost in terms of congestion level, financial cost and 

switching probability. Simulation results are provided to 

evaluate the performance of the proposed method in two 

scenarios. The first scenario ignores the pricing method while 

the second consider the price of each channel in its decision 

making process These two proposed scenarios have been 

compared with a recent scheme. 

I. INTRODUCTION 

Due to insufficient spectrum availability that enforced by 
regulatory bodies, optimal utilization of the spectrum has 
known as an important issue in the last decade. The solution 
for the spectrum scarcity problem uses Dynamic Spectrum 
Allocation (DSA) instead of Static Spectrum Allocation 
(SSA) schemes. Cognitive Radio Networks (CRNs) are 
developed for providing a framework for this purpose. Two 
types of users have been defined in the hierarchical model of 
CRNs: Primary Users (PUs) and Secondary Users (SUs). PUs 
or licensed users have permission to arbitrarily access to their 
corresponding channels while SUs or unlicensed users can 
opportunistically exploit the idle channels or white spaces of 
spectrum [1]. SUs should not incur harmful interference for 
PUs. Cognitive radio also refers to a new technology that 
equipped radios with new capabilities like spectrum sensing, 
behavioral learning, and intelligent decision making. Using 
these capabilities, CRNs require four functionalities known as 
Spectrum Sensing, Spectrum Decision, Spectrum Sharing and 
Spectrum Mobility [1]. Spectrum mobility is a main 
challenge of CRNs which is less considered in recent 
literatures. 

Due to the preemptive priority of PUs, SUs should vacate 
the channel as soon as a PU appears on the channel. In this 

situation, the SU should select a new target channel to resume 
its transmission. This procedure is called spectrum handoff 
[1]. As network topology and spectrum availability are 
changing dynamically, we should handle two main 
functionalities for spectrum mobility that consist of spectrum 
handoff and connection management [1]. Spectrum handoff 
provides monolithic communications in occurrences of link 
failure or quality degradation. Connection management is 
required for maintaining the Quality of Service (QoS) or 
minimizing the quality degradation during spectrum 
switching [1]. This paper focuses on spectrum handoff 
without considering connection management. There are two 
types of spectrum handoff mechanisms known as proactive-
decision and reactive-decision spectrum handoff [2]. In the 
proactive-decision spectrum handoff mechanism, the target 
channel is determined by long term monitoring of traffic 
patterns, like PUs’ arrival rate, prior to spectrum handoff is 
requested. In reactive-decision spectrum handoff 
mechanisms, the target channel is determined after the 
occurrence of spectrum handoff. Hence, the interrupted SU 
should explore the spectrum to find the best available channel 
as its target channel [2]. Both proactive and reactive schemes 
have their own advantages and disadvantages. Nevertheless, 
depending on the environment circumstances and capability 
of SUs we can prefer one against the other. The main 
disadvantage of proactive approaches is that the preselected 
target channel may no longer be available at the instant of 
switching while the main disadvantage of reactive approaches 
is the delay of sensing. As we assume a negligible period for 
sensing time, we focus on reactive schemes in this paper 
rather than proactive schemes. 

The rest of this paper is organized as follows: Section II 
reviews the related works and includes the paper motivation. 
In section III, the problem statement, assumptions, system 
model, and notations have been presented. Some background 
materials on game theory are provided in section IV. The 
proposed approach using the regional congestion game theory 
is presented in section V. Simulation results are provided in 
section VI, followed by the conclusions in section VII. 

II. RELATED WORKS AND PAPER MOTIVATION  

In [3] a CRN architecture based on spectrum pool is 
introduced and a spectrum pool structure is proposed to 
categorize handoff events. These categories are divided 
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spectrum mobility management, user mobility management 
and inter-cell resource allocation. Also, a unified framework 
for mobility management is defined to support these events. 
In this paper, the spectrum mobility event is considered and 
the user mobility and inter-cell resource allocation events are 
neglected. The spectrum handoff problem in reactive 
approaches is discussed in [4]. However, the main body of 
literature on spectrum mobility models the handoff 
management from a proactive viewpoint. 

The main challenge of reactive spectrum handoff meets 
its requirement for distributed coordination among SUs after 
switching for efficient exploitation of white spaces. This 
challenge can be addressed by game theory because it 
facilitates developing of distributed mechanisms for channel 
selection of SUs and mobility management strategies.  

A game-based scheme for spectrum sharing in CRNs was 
presented in [5] where SUs are competing to share the unused 
bands. The user profit function is defined based on the 
achieved utility of allocated bandwidth minus the price, 
which should be paid by the user. We use this pricing idea in 
our channel selection method. A potential game for the 
channel selection problem was proposed in [6] in which SUs 
cooperate with each other. Although this game converges to a 
Nash Equilibrium (NE), however SUs ought to have a huge 
message passing, which makes it hardly scalable. 
Furthermore spectrum mobility management was not 
considered in [5-6]. 

A non-cooperative spectrum selection scheme was 
proposed in [7] to model interactions among SUs which 
consider the spectrum mobility problem with its system 
model. A channel switching game was proposed in [8] using 
a modified minority game where the players try to minimize 
their cost to find an idle channel. However the spectrum 
trading didn’t consider in [6-8]. 

As a few works addressed the channel selection and handoff 

management problem from a reactive viewpoint, this paper 

has considered a reactive decision-spectrum handoff to 

evaluate unchallenged discussions of the reactive mode. 

Game theory is a bag of powerful analytical tools designed to 

address situations in which the outcome of a decision maker 

depends not only on its preferences, but also on the choices 

made by the other interacting decision makers. Hence it is an 

appropriate framework for modeling the interactions among 

SUs. 

III. SYSTEM MODEL AND PROBLEM STATEMENT  

We consider a CRN with N SUs and M channels (M < N) 
in which each channel assigns to a specific PU. The network 
environment is a square with a width of D. The system is time 
slotted in which PUs exploit the channels for some stochastic 
duration of timeslots. We assume this environment 
dynamically changes in each timeslot in terms of PU’s 
activities and SU’s selected channels but the users are 
stationary. 

The       traffic is modeled as a 2-state Markov chain, 
with parameters    and    which denote the transition 
probabilities as depicted in Fig. 1. 
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Figure 1. Traffic pattern of PUs 

We assume that SUs have data to transmit in all timeslots 
and the sensing outcomes of SUs are perfect. We assume 
each user has a specified interference range. While a PU 
transmits on its own dedicated channel, SUs which are in the 
range of that PU are not allowed to use the channel. However, 
SUs located out of this range can use the channel 
simultaneously. In addition, multiple SUs who are in the 
range of each other can transmit on a same channel at a same 
time by the degradation of their QoS. This degradation is due 
to the increasing the number of interfering SUs. The 
neighboring concept is defined as follows. 

Definition1:     is a neighbor of     if and only if it is 

located in the interference range of    .  

As mentioned above neighboring SUs can transmit on a 
same idle channel in a same time. This transmitting can be 
provided through a multiplexing technique like Time 
Division Multiplexing Access (TDMA). Assuming the same 
interference range, the neighboring relation is symmetric. 
This means if     is the neighbor of    , then     is also the 

neighbor of    . 

The goal of this paper is to design a reactive distributed 
mechanism where each SU is able to select an idle channel 
considering the required constraints. The challenge is to 
control channel selection and switch decisions concurrently 
for SUs in order to minimize the total cost that experienced 
by all users. SUs should opportunistically access to vacant 
channels, with the firm constraint to perform handoff 
whenever the channel gets occupied by its PU. For this 
purpose, each SU should determine a vector of available 
channels in each timeslot; we define this vector as feasible 
channels. Each SU determine this vector through a reactive 
sensing independently. 

Definition2:    ’s feasible channels are the subset of 
channels which are available for    , i.e., channels with an 
inactive or an active PU in which      is out of primary 
interference range of this active PU. 

For the rest of this paper, the term player or user 
specifically refers to a pair of SU’s transmitter and receiver. It 
is possible that feasible channels and neighboring set are 
different for a transmitter and receiver of a pair of SU. Hence, 
in our system model we consider the feasible channels for a 
pair as the intersection of both transmitter and receiver’s 
feasible channels. In addition, the neighboring SUs for a 
given pair are the union of both transmitter and receiver’s 
neighbors. 

IV. BACKGROUNDS 

We model our channel allocation problem as the 
congestion game first defined by Rosenthal [9]. There is an 
isomorphic correspondence between a congestion game and a 
potential game [10]. A definition of the Normal Congestion 



Game (NCG) which is based on the congestion model 
introduced in [9], provide by [11]. For these games we have: 

Theorem 1: Every congestion game is a potential game 
[10]. 

Theorem 2: Every finite potential game possesses pure-
strategy equilibrium [10]. 

The standard definition of a congestion game is useful for 
situations in which there is a competition for a common 
resource. However, due to the spatial reuse capability of 
wireless nodes, we have a regional competition. Consider 

channels as resources where a random user,     player, only 
interferes with users which are located in its interference 
range. Hence, we use a new definition retrieved from [11] as 
follows: 

Definition3: Congestion Game with Resource Reuse (CG-
RR) or Spatial Congestion Game (SCG) defined by 
quintuplet                                  in 
which             is the set of players or SUs,   
           is the set of resources or channels, and        

is the strategy space of     player. Also    is the set of 

players who are interfering with     player and         
determine a payoff (or cost) function associated with resource 

m. Selecting resource m, the payoff for the     player is 

     
        where   

     is number of users using 

resource m and interfere with     player. In mathematical 

expression,   
                    . Note that plus one 

is due to    is not included     player. Therefore, total payoff 

for     player in a regional congestion game is given by (1). 

             
           

 

According to the strategy space of     player which is 
determined by   , we can observe that this strategy space is a 
subset of resources. This means that every player can select 
more than one resource at each decision stage. However, due 
to the transceiver constraint, we assume each SU can select 
only one channel at each decision stage and consequently the 
strategy space is given by      .In other words the 
strategy space for each player includes M separate resources. 
Therefore, the payoff function for selecting resource m with 

the     player is given by (2). 

         
    

     

Where   
                    .We called this 

game as Regional Congestion Game (RCG). We should note 
that the payoff function in the RCG is a monotonic increasing 
function in terms of number of interferers. The cost function 
of RCG depends on the user. In other words we want to 
introduce a user specific payoff function in which each player 

has its preferences; hence we use   
  notation instead of    in 

the RCG.  

V. CHANNEL DECISION MAKING BASED ON REGIONAL 

CONGESTION GAME  

We can model our channel allocation problem as the 
outcome of the game in which the players are SUs, their 

actions or strategies are the feasible channels and their 
preferences are associated with the quality, price and 
switching cost of the selected channel.  

In this game model the player’s objective is to maximize 
the acquired bandwidth and minimize the procrustean 
congestion level and switching probability. Congestion level is 
determined by the number of neighboring users that share the 
same channel. Hence, a cost function       is associated with 

the decisions of     player and all of its neighbors. This cost is 
a function of the channel characteristics. As stated in the 
definition of RCG,       is monotonically increasing in terms 
of congestion level. 

The proposed game can be formally defined as follows: 

                          
          

Where  , first   and    is similar to the previous 
definition and the second   represent our strategy space. 

Also    and   
   are the selected strategy of     and the 

received congestion level for the     player respectively. 

Each user minimizes its experienced cost function 
selfishly as follow: 

  
        

     
        

    

The definition of the cost function for SUs depends on the 
available information. We assume SUs could retrieve the 
congestion level of selected channel through a common 
control channel and their RTS/CTS message passing. Also we 
assume they know the characteristics of each channel.  

To have some appropriate criteria we should consider 
PU’s characteristics, channel’s characteristics and 
characteristics of SUs in our cost function.  

A. Characteristics of PUs 

According to the Markov chain, which depicted in Fig. 1, 
we define idle and busy periods. Idle (busy) period is the 
number of consecutive timeslots that a channel is idle (busy) 
and depends on the value of     (   ). Smaller value for     
(   ) leads to larger idle (busy) period. The possible values of 
the Markov chain parameters in TABLE I, extracted from [7]. 
Also         is a measure which indicates the PU’s activity. 

 
 
 

 
             

                                             

                                                         

                                                     

                                                         

  

Since in the channel selection, SUs sense the channel in a 
reactive or online approach, the goal could be to select an idle 
channel with the smallest         value.  

Based on idle and busy periods we define switching cost in 
the form of           . Note that      is the cost of 

switching from     channel to     channel. 



TABLE I: Characteristics of PUs and their corresponding channels [7] 

 
Low PU’s activity Medium PU’s activity High PU’s activity 

Low opportunity High opportunity Low opportunity High opportunity Low opportunity High opportunity 

No channel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

p 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.8 0.8 0.8 0.8 0.8 0.8 

q 0.1 0.1 0.1 0.5 0.5 0.5 0.3 0.3 0.3 0.8 0.8 0.8 0.3 0.3 0.3 0.9 0.9 0.9 

BW(KHz) 250 100 70 250 100 70 250 100 70 250 100 70 250 100 70 250 100 70 

IBW 1 2.5 3.5 1 2.5 3.5 1 2.5 3.5 1 2.5 3.5 1 2.5 3.5 1 2.5 3.5 

Holding Time 5 5 5 5 5 5 2 2 2 2 2 2 1.25 1.25 1.25 1.25 1.25 1.25 

Where           
   and    

   is the time duration from 

last busy timeslot until now for   . But since    
   is vary from 

time to time, for the convenience of player’s computations we 

use 
 

           
 instead of    

  , because as mentioned above 

        denotes the activity of     . Therefore we have 

      
 
  

    
    

   
 

   

           
 

B. Characteristics of SUs 

In this paper, we assume SUs have the same capabilities, 
this means that if a channel allocated to some SUs, all of these 
SUs gain an identical bandwidth. In other words, the proposed 
game is a type of non-weighted regional congestion game. 

C. Characteristics of channels 

We differ the channels in the cost function by two features 
called quality and price related to each other. In other words, 
the channel which has a high quality, imposed a higher price 
to its users. Indeed price is an increasing function of quality, 
and quality of each channel determined by its bandwidth. 
Furthermore the price of a channel has a reverse relation to 
corresponding PU’s activity of this channel.  

Therefore the first criterion is the channel’s bandwidth that 
has been expressed in (4). The possible values of the 
bandwidth parameter in TABLE I, were chosen according to 
[7]. 

  
                              

                              
  

We also define the two criteria of price and channel 
switching cost as follows. 

                                 

      

             
    
 

    
 

 
 

    
 

             

 

   

 

 

Row’s indexes are pertaining to   
    and column’s 

indexes are pertaining to   
   . As the values of p and q are 

fixed for each PU, SCM is a fixed matrix and we also assume 
the entries on the major diagonal of this matrix are zero. 

Based on these three criteria we introduce the following 
cost function: 

                           
   
      

   

Where    and     are the selected strategy by the     

player and its opponents, i.e., all player excluding     player, 
respectively.     is the characteristic of   , i.e., the inverse of 

bandwidth (IBW). Also,   
   is the cost of using    for    . 

This cost is only depends on the requirements of     and its 
experiments in previous timeslots. As the upper bound of 
sigma in (7) is the number of SUs, it calculates the number of 

interferers for     player. 

Also         and   
  is computed by (8) and (9) 

respectively.  

          
         

                           
                           

 
 

                                                       

  

   
                        

Where      is the previous selected channel for     Which 
doesn't depend on the new selected channel. However because 
the previous selected channel for each SU is variable, as 

describe in (9), SCM is depending on     index. In other 
words each SU has a specific SCM matrix. 

It can be shown that the proposed game is a potential game 
[12]. Therefore, the proposed cost function converges to a NE. 

In previous works, the real price of a channel has not 
considered and channel selection was only depends on the 
quality of the channels. In this paper we consider both 
channel’s quality and channel’s price in the cost function.  

In the proposed cost function we define three criteria with 
different dimensions. Indeed our problem is a multi-objective 
problem. Therefore for having a meaningful summation in the 
cost function we use weighted summing in which the weights 



are the preferences of the users in selecting channels. 
Therefore we have: 

                               

   

   

 

          
              

Where K is the switching cost effect in which we can 
evaluate the effect of changing switching cost on some 
criteria. In other words, for simulation we increase the impact 
of SCM by K. 

Due to precise weights adaptation it is better to normalize 
three predefine criteria. To this end we divide price and 
channel switching cost on their maximum value and then we 
map these two criteria into the range of IBW through a linear 
mapping. 

VI. SIMULATION RESULTS 

We consider an environment with size         by 20 
SUs and 9 PUs in which each channel is dedicated to a PU 
randomly. Interference range for PUs and SUs set to 300 and 
200 respectively. 

To evaluate the effect of channel selection in switching, 
we run our game in the 10 timeslot iteratively and evaluate 
three metrics. 

1- Utility: The multiplication of the bandwidth and 
holding time divided by number of interferers for a selected 
channel. 

2- Price: The sum of the prices associated with SUs. 

3- Switching probability: the ratio of a number of 
switching to total number of decision stages.  

We consider both price based and without pricing 
scenarios in simulations. The weighting parameters for price 
based scenario are       ,         and        . 
Also these weights for the ignoring price scenario are    
   ,        and      . These settings are based on the 
environmental features like dimension, number of players and 
a number of resources as well as the player’s characteristics 
like transmitting rate and resource’s features like PU’s 
activity.  

We compare the results of simulation with the original cost 
function which introduced in [7]. It is significant to notice that 
in all simulations we use a unique evaluation metric.  

The utility of these three approaches is depicted in Fig. 2. 
The proposed schemes with pricing and without pricing 
outperform the results of [7]. 

 

Figure 2. Average utility of SUs 

The increasing impact of switching cost leads to decrease 
the average utility in all three schemes because the incentive 
of SUs for switching to better channel would be reduced. 

As we expected, considering the price in the cost function 
cause to decrease the utility, because choosing a better channel 
leads to paying higher prices.  

We also evaluate price in terms of switching cost, as 
depicted in Fig. 3. Increasing switching cost leads to decrease 
the price for SUs, because they have no incentive to choose a 
better channel and since selecting a better channel has a higher 
price, the imposed price would be decreased. 

 

Figure 3. Average imposed price of SUs 

The switching probability of the free pricing scheme is 
almost same as [7]. However, by adjusting the weights in the 
price-based scheme we can obtain better results as depicted in 
Fig. 4. 

 
Figure 4. Switching probability of SUs during all timeslots 

Only the impact of channel selection on delay has been 
considered in the evaluation and the delay of coordination or 
multiplexing has been neglected because these delays are 
same for all SUs.  



VII. CONCLUSIONS 

We propose a reactive scheme for spectrum handoff and 
channel selection problem in cognitive radio networks using 
regional congestion game theory. Developing a price based 
utility function for each secondary user we derive the results 
of the game and compare it with a recent similar scheme. The 
proposed scheme has the capability of adjusting in different 
conditions. Simulation results are provided to evaluate the 
performance of the proposed scheme in terms of achieved 
average utility, imposed price and switching probability.  
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